Coleman-Derr awarded DOE Grant

Project Goal and Summary: Generate a model linking sorghum physiology and genetics with its epigenetic regulatory machinery, microbial community, and composite genetic pathways involved in drought response. Efforts will focus on the role that epigenetic signals play over time in acclimation to and recovery from drought. Responses to water deprivation of two sorghum cultivars differing in their drought responses will be followed during drought studies in California’s Central Valley, where lack of summer rainfall makes well-controlled, field-based drought studies possible. Phenotypic analyses will be conducted to chart characteristics such as growth, flowering time, and grain and biomass yield. Leaf and root samples also will be taken to track spatiotemporal changes in epigenetic, transcriptomic, metabolomic, and proteomic footprints. Shifts in sorghum-associated microbial community composition and activity throughout the drought period will be studied to determine if changes in membership or functional capacity within the rhizosphere, root endosphere, and phyllosphere correlate with epigenetic, transcriptional, or metabolomic variation in the plant. The ultimate goal is to identify key transcriptional regulators and pathways controlling drought resistance and characterize their mechanisms of action in both the plant and its associated microbial communities. The genetic targets and their regulatory pathways will be utilized in future efforts to improve growth and biomass production of sorghum and other crops in the field and in marginal lands under water-limiting conditions.

UC-Berkeley Press Release